Rosner

Mathe gut erklärt Abitur 2024

Baden-Württemberg Basisfach Mathematik Allgemeinbildende Gymnasien

10. Auflage

Stefan Rosner, geb. 1979, studierte Mathematik in Mannheim und unterrichtet seit 2005 in der Oberstufe.

©2023 Freiburger Verlag GmbH, Freiburg im Breisgau 10. Auflage. Alle Rechte vorbehalten Printed in EU www.freiburger-verlag.de

Inhaltsverzeichnis

[.	Grundlagen Analysis	6
1	Funktionen (Mindmap)	6
1.1	Ganzrationale Funktionen (Polynome)	8
1.2	Der Nullstellenansatz und die Vielfachheit von Nullstellen	0
1.3	Exponential funktionen	2
1.4	Trigonometrische Funktionen	4
1.5	Übersicht: Spiegeln, Strecken und Verschieben	6
1.6	Symmetrie zur y-Achse bzw. zum Ursprung	8
1.7	Umgang mit Funktionen: Rechenansätze	9
2	Gleichungen (Mindmap)	0
2.1	Gleichungstypen: Übersicht	2
2.2	Gleichungstypen: Konkretes Lösungsvorgehen	4
2.3	Goldene Regeln zum Lösen von Gleichungen	0
2.4	Lineare Gleichungssysteme	2
2.5	Ungleichungen	4
3	Differenzialrechnung (Mindmap)	6
3.1	Ableitungsregeln	8
3.2	Tangente und Normale	.1
3.3	Monotonie	4
3.4	Krümmung	.5
3.5	Extrempunkte (Hoch- und Tiefpunkte)	6
3.6	Wendepunkte	.7
3.7	Sattelpunkte	8
3.8	Zusammenhang zwischen den Schaubildern von Funktion und Ableitung 5	2
3.9	Ermittlung von Funktionsgleichungen	4
3.10	Extremwertaufgaben	6
3.11	Wachstum und Zerfall	8
4	Integralrechnung (Mindmap)	1
4.1	Integrationsregeln ("Aufleitungsregeln")	2
4.2	Flächeninhaltsberechnung zwischen Schaubild und x-Achse 6	6
4.3	Flächeninhaltsberechnung zwischen zwei Schaubildern 6	8
1.4	Zusatz: Wichtiges für Anwendungsorientierte Aufgaben	2
II.	Grundlagen Vektorgeometrie (Mindmap)	6
1	Vorwissen	
1.1	Punkte (im \mathbb{R}^3)	8
1.2	Vektoren (im \mathbb{R}^3)	8

1.3	Rechnen mit Vektoren (Addition, Subtraktion, Betrag, Skalare Multiplikation, Linearkombination, Lineare Abhängigkeit und Unabhängigkeit, Skalarprodukt,
	Vektorprodukt)
2	Geraden
2.1	Geradengleichungen in Parameterform
2.2	Gegenseitige Lage von Geraden
3	Ebenen
3.1	Ebenengleichungen in Parameterform
3.2	Ebenengleichungen in Koordinatenform
3.3	Spurpunkte, Spurgeraden und die Lage im Koordinatensystem 90
3.4	In welcher Situation ist welche Ebenenform zu empfehlen? 91
3.5	Umwandlungen der Ebenenformen
4	Gegenseitige Lage
4.1	Ebene-Gerade
4.2	Ebene-Ebene
5	Schnittwinkel
6	Abstandsberechnungen
7	Spiegelungen
III.	Grundlagen Stochastik (Mindmap)
1	Baumdiagramm, Pfadregeln und Erwartungswert
1.1	Einführung
1.2	Aufgabentypen
1.3	Zufallsgröße, Erwartungswert und Standardabweichung
2	Bedingte Wahrscheinlichkeit, Unabhängigkeit, Vierfeldertafel 120
2.1	Bedingte Wahrscheinlichkeit
2.2	Unabhängigkeit
2.3	Vierfeldertafel
2.4	Zusammenhänge und Vernetzung
3	Binomialverteilung
3.1	Bernoulliformel
2.2	Binomialverteilung und kumulierte Binomialverteilung
3.3	Aufgabentypen
3.4	Erwartungswert und Standardabweichung
4	Normalverteilung
4.1	Unterschied zur Binomialverteilung
4.2	Normalverteilung und Gaußsche Glockenkurve
4.3	Aufgabentypen

Vorwort

Liebe Schülerinnen und Schüler,

dieses Buch und die Videos sollen Sie dabei unterstützen.

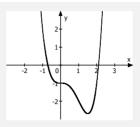
- sich in den letzten beiden Schuljahren optimal auf Klausuren und auf das **mündliche Abitur** in Mathematik vorzubereiten.
- sich alle Lehrplaninhalte anhand verständlicher und übersichtlicher Stoffzusammenfassungen anzueignen.
- durch Erfolge neue Motivation für das Fach Mathematik zu bekommen.

Liebe Fachkolleginnen und Fachkollegen,

dieses Buch und die Videos sollen Sie dabei unterstützen,

- die zeitintensive Stoffwiederholung, Klausur- und Abiturvorbereitung teilweise aus dem Unterricht auslagern zu können.
- auf diese Weise mehr Zeit für verständnisorientierten Unterricht zu gewinnen.
- sicherzustellen, dass Ihre Schülerinnen und Schüler über ausreichendes Basiswissen verfügen.

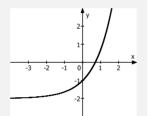
NEU


Über **60 Videos** des Autors, in welchen alle Stoffzusammenfassungen nochmals erklärt werden. Zugriff über Kurzadresse oder QR-Code aus dem Buch.

Mindmaps zu Beginn des jeweiligen Kapitels.

Ganzrationale Funktion

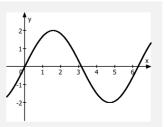
$$f(x) = x^4 - 2x^3 - 1$$

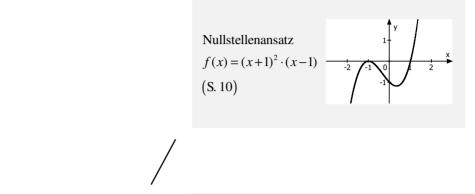

(S. 8)

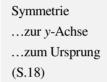
Exponentialfunktion

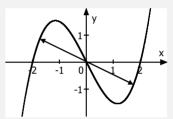
$$f(x) = e^x - 2$$

(S. 12)




Funktionstypen


$$f(x) = 2 \cdot \sin(x)$$


(S. 14)

Spiegeln, Strecken und Verschieben (S.16)

1. Funktionen

1.1 Ganzrationale Funktionen (Polynome)

1. Grades (Geraden)

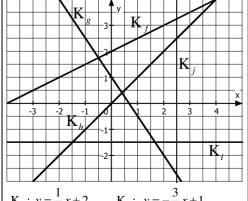
Hauptform: y = mx + b

Vorgehen zum Einzeichnen:

$$y = \frac{hoch / runter}{rechts} \cdot x + y - Achsen - abschnitt$$

Steigung aus 2 Punkten:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Steigungswinkel aus Steigung bestimmen: $m = \tan(\alpha)$


Parallele Geraden:

 $m_1 = m_2$ (gleiche Steigung)

Senkrechte (orthogonale) Geraden: Steigungen sind negative Kehrwerte

voneinander: $m_2 = -\frac{1}{m_1}$ bzw. $m_1 \cdot m_2 = -1$

- 1. Winkelhalbierende: $y = x \quad (m = 1)$
- 2. Winkelhalbierende: y = -x (m = -1)

$$K_f$$
: $y = \frac{1}{2}x + 2$ K_g : $y = -\frac{3}{2}x + 1$

 K_h : y = x (1. Winkelhalbierende)

$$K_i: y = -1,5$$
 $K_i: x = 2,5$

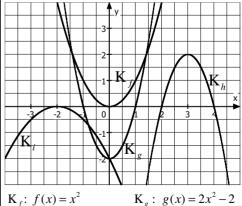
$$K_i$$
: $x = 2,5$

2. Grades (Parabeln)

Allg.: $f(x) = ax^2 + bx + c$

Scheitelpunkt-Ansatz:

$$f(x) = a \cdot (x - x_s)^2 + y_s \text{ mit } S(x_s \mid y_s)$$


a > 0: nach oben geöffnet bzw. Verlauf von II nach I

a < 0: nach unten geöffnet bzw. Verlauf von III nach IV

Schnittpunkt mit y-Achse: $S_{v}(0|c)$

Bei Symmetrie zur y-Achse:

$$f(x) = ax^2 + c$$
 (nur gerade Hochzahlen)

$$\mathbf{K}_f \colon f(x) = x^2$$

$$K_g: g(x) = 2x^2 - 2$$

$$K_h$$
: $h(x) = -2(x-3)^2 + 2$

$$K_i$$
: $i(x) = -0.5x^2 - 2x - 2$

3. Grades

4. Grades

Allg.: $f(x) = ax^3 + bx^2 + cx + d$

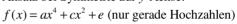
Allg.: $f(x) = ax^4 + bx^3 + cx^2 + dx + e$

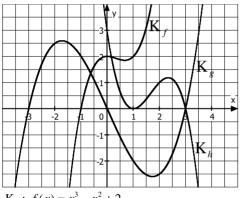
a > 0: Verlauf von III nach I

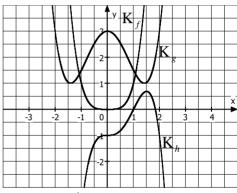
a > 0: Verlauf von II nach I

a < 0: Verlauf von II nach IV

a < 0: Verlauf von III nach IV


Schnittpunkt mit y-Achse: $S_v(0|d)$


Schnittpunkt mit y-Achse: $S_v(0|e)$


Ansatz bei Symmetrie zum Ursprung:

Ansatz bei Symmetrie zur y-Achse:

$$f(x) = ax^3 + cx$$
 (nur ungerade Hochzahlen)

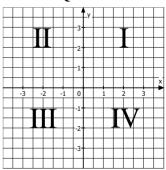
 K_f : $f(x) = x^3 - x^2 + 2$

 $K_{f}: f(x) = x^{4}$

 $K_g: g(x) = \frac{1}{4}x^3 - \frac{9}{4}x$

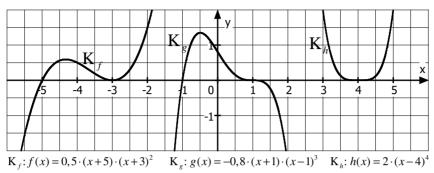
 $K_g: g(x) = 0.5x^4 - 2x^2 + 3$

 $K_h: h(x) = -x^3 + 5x^2 - 7x + 3$


 $K_h: h(x) = -x^4 + 2x^3 - 1$

Tipp (für alle ganzrationalen Funktionen)

a > 0: Verlauf von ... nach I (,, endet oben")


a < 0: Verlauf von ... nach IV ("endet unten")

Die Quadranten

1.2 Der Nullstellenansatz und die Vielfachheit von Nullstellen

Beispiele

Aufbau des Nullstellenansatzes (am Beispiel)

$$g(x) = -0.8 \cdot (x+1) \cdot (x-1)^3$$

Verlauf $x_0 = -1$ $x_{1/2/3} = +1$
von III ist einfache ist dreifache
nach IV Nullstelle Nullstelle

Übersicht (für ganzrationale Funktionen)

Vielfachheit Nullstelle	Faktor im Nullstellenansatz	Skizze	Beschreibung
Einfache Nullstelle:	$f(x) = \dots \cdot (x - x_0) \cdot \dots$	× ×	Schaubild schneidet x-Achse (mit Vorzeichenwechsel VZW)
Doppelte Nullstelle: x_0	$f(x) = \dots \cdot (x - x_0)^2 \cdot \dots$	x ₀	Schaubild berührt x-Achse (ohne VZW)
Dreifache Nullstelle:	$f(x) = \dots \cdot (x - x_0)^3 \cdot \dots$	y X ₀	Schaubild schneidet und berührt <i>x</i> -Achse (mit VZW)
Vierfache Nullstelle:	$f(x) = \dots \cdot (x - x_0)^4 \cdot \dots$	x ₀	Schaubild berührt x-Achse (ohne VZW) ("breiter" geformt als doppelte Nullstelle)

Beispiel

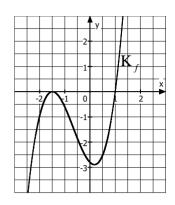
Gesucht ist der Funktionsterm zum nebenstehenden Schaubild.

Lösung

Da die Nullstellen $(x_{1/2} = -1,5; x_3 = 1)$ des Schaubildes ablesbar sind, kann der Nullstellenansatz der Funktion weitgehend aufgestellt werden:

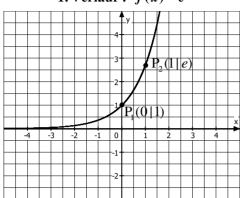
$$f(x) = a \cdot (x+1,5)^2 \cdot (x-1)$$

Dann werden die Koordinaten eines weiteren Punktes, der kein Schnittpunkt mit der *x*-Achse ist, eingesetzt:

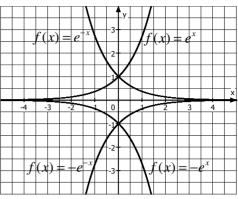

P(0,5|-2,5):
$$f(x) = a \cdot (x+1,5)^{2} \cdot (x-1)$$

$$-2,5 = a \cdot (0,5+1,5)^{2} \cdot (0,5-1)$$

$$-2,5 = -2a$$


$$\frac{5}{4} = a$$

$$\Rightarrow f(x) = \frac{5}{4} \cdot (x+1,5)^{2} \cdot (x-1)$$



1.3 Exponentialfunktionen

1. Verlauf: $f(x) = e^x$

2. Spiegelungen

- 3. Koeffizienten in : $f(x) = a \cdot e^{b \cdot (x-c)} + d$
- a Streckung / Stauchung in y-Richtung a > 1: "steiler"

0 < a < 1: "flacher"

(a < 0: an der x-Achse gespiegelt)

 \boldsymbol{b} - ansteigendes oder fallendes Schaubild b > 0: ansteigendes Schaubild

b < 0: fallendes Schaubild

(bzw. an der y-Achse gespiegelt)

c - Verschiebung in x-Richtung c > 0: nach rechts

c < 0: nach links

d - Verschiebung in y-Richtung d > 0: nach oben

(y = d ist Asymptote) d < 0: nach unten

Vorsicht beim Koeffizienten c

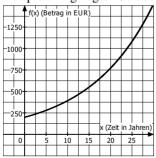
Das Schaubild zu $f(x) = e^{x-3}$ wurde um 3 Einheiten nach *rechts* verschoben!

Der Koeffizient c hat hier den Wert +3, das Minuszeichen kommt vom allgemeinen Ansatz der Funktion.

Entsprechend $f(x) = e^{x+2}$: Verschiebung um 2 nach *links*!

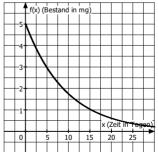
4. Asym	ptoten (Näh	erungsgeraden)
	(

Beispielfunktion	Asymptote	Schaubilder
$f(x) = e^x$	$y = 0 (x - Achse)$ für $x \to -\infty$	K _h 5 K _f
$g(x) = e^x + 2,7$	$y = 2,7$ für $x \to -\infty$	K _g 3
$h(x) = e^{-x} + 1,5$	$y = 1,5$ für $x \to +\infty$	y = 2.7 $y = 0$ $y = 1.5$
$i(x) = 2e^{-x-1} - 1,3$	$y = -1,3$ für $x \to +\infty$	-4 -3 -2 -1 0 K 1 2 3 4
$j(x) = -e^{x-1} - 2,6$	$y = -2, 6$ für $x \to -\infty$	y = -2,6 $y = -1,3$ $y = -1,3$

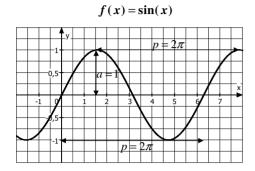

Regeln:

- 1. Asymptotengleichung: y =, Exponentialgleichung ohne e^{-x}
- 2. Annäherungsrichtung: Bei e^{-x} für $x \to -\infty$ bzw. bei e^{-x} für $x \to +\infty$

5. Anwendungen


Wachstum mit $f(x) = e^{x+x}$

Beispiel: Angelegter Geldbetrag vermehrt sich


Zerfall mit $f(x) = e^{-x}$

Beispiel: Chemischer Stoff zerfällt

1.4 Trigonometrische Funktionen

1. Verlauf

$$f(x) = \cos(x)$$

$$p = 2\pi$$

$$0,5$$

$$-1$$

$$0$$

$$2$$

$$3$$

$$4$$

$$5$$

$$6$$

$$7$$

2. Koeffizienten: $f(x) = a \cdot \sin(b \cdot (x-c)) + d$ und $f(x) = a \cdot \cos(b \cdot (x-c)) + d$

a - Amplitude

(|a|, also , Zahl a ohne Vorzeichen",gibt max. Abstand zur "Mittellinie" an) (Streckung in y-Richtung)

 $\left(a < 0: \begin{array}{c} \text{an der } x\text{-Achse} \\ \text{gespiegelt} \end{array}\right) \qquad \left(a = \frac{y_{\text{max}} - y_{\text{min}}}{2}\right)$

b - entscheidet Periodenlänge

("Dauer eines Durchlaufes")

Streckung in x-Richtung um $\frac{1}{h}$

 $b = \frac{2\pi}{p} \quad \left(\begin{array}{c} p \text{ entspricht der} \\ \text{Periodenlänge} \end{array} \right)$

c - Verschiebung in x-Richtung

c > 0: nach rechts c < 0: nach links

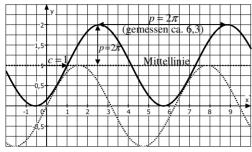
d - Verschiebung in y - Richtung

("Höhe der Mittellinie")

d > 0: nach oben d < 0: nach unten

 $\left(d = \frac{y_{\text{max}} + y_{\text{min}}}{2}\right)$

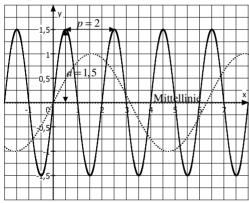
Vorsicht beim Koeffizienten c


Das Schaubild zu $f(x) = \sin(x-3)$ wurde um 3 Einheiten nach rechts verschoben!

Der Koeffizient c hat den Wert +3, das Minuszeichen kommt vom allgemeinen Ansatz der Funktion.

Entsprechend $f(x) = \sin(x+2)$: Verschiebung um 2 nach *links*!

Beispiel 1 (Zusätzlich ist das Schaubild von $f(x) = \sin(x)$ gestrichelt eingezeichnet.)


$$\Rightarrow f(x) = \sin(x-1) + 1$$
(Alternativ: $f(x) = \cos(x-2,57) + 1$)

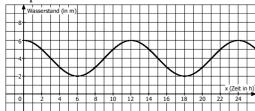
 $\operatorname{Mit} f(x) = a \cdot \sin(b \cdot (x - c)) + d:$

- d = 1 Mittellinie auf Höhe +1 $\left(\text{oder mit } \frac{2+0}{2} = \frac{2}{2} = 1\right)$
- a = 1 (max. Abstand von 1 zur Mittellinie) $\left(\text{oder mit } \frac{2-0}{2} = \frac{2}{2} = 1\right)$
- c = 1 Verschiebung um 1 nach rechts

$$\bullet b = \frac{2\pi}{p} = \frac{2\pi}{2\pi} = 1$$

Beispiel 2

 $\Rightarrow f(x) = 1.5 \cdot \sin(\pi \cdot x)$ (Alternativ: $f(x) = 1.5 \cdot \cos(\pi \cdot (x - 0.5))$)


 $Mit f(x) = a \cdot \sin(b \cdot (x - c)) + d:$

- d = 0 Mittellinie auf Höhe 0 $\left(\text{oder mit } \frac{1,5 + \left(-1,5\right)}{2} = \frac{0}{2} = 0\right)$
- a = 1,5 max. Abstand von 1,5 zur Mittellinie $\left(\text{oder mit } \frac{1,5 - \left(-1,5\right)}{2} = \frac{3}{2}\right)$
- c = 0 keine Verschiebung bei sin
- $\bullet b = \frac{2\pi}{p} = \frac{2\pi}{2} = \pi$

3. Anwendungen

Periodische Vorgänge, also Vorgänge, die sich in gleichen Zeitabschnitten wiederholen, werden oft mit trigonometrischen Funktionen modelliert.

Beispiel: Wasserstand bei Ebbe und Flut

1.5 Übersicht: Spiegeln, Strecken und Verschieben

 $f(x) \rightarrow$

	Spiegeln an		Strec -
	x - Achse	y - Achse	y - Richtung
$f(x) = x^2$	$g(x) = -x^{2}$	$g(x) = (-x)^{2} = x^{2}$	$g(x) = 2 \cdot x^{2}$ $g(x) = 2 \cdot $
$f(x) = e^x$	$g(x) = -e^{x}$ $g(x) = -e^{x}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$	$g(x) = e^{-x}$ $g(x) = e^{-x}$ $\frac{3}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	$g(x) = 0.5 \cdot e^{x}$ $g(x) = 0.5 \cdot e^{x}$ e^{x} e^{x} $g(x) = 0.5 \cdot e^{x}$ e^{x} e^{x} $g(x) = 0.5 \cdot e^{x}$ e^{x} e^{x
$f(x) = \sin(x)$	$g(x) = -\sin(x)$	$g(x) = \sin(-x)$	$g(x) = 2 \cdot \sin(x)$ $g(x) = 2 \cdot$
	g(x) = -f(x)	g(x) = f(-x)	$g(x) = \boldsymbol{a} \cdot f(x)$
	"–" vor Funktionsterm	" x " durch " $-x$ " ersetzt	Streckung mit Faktor a in y-Richtung

$$\rightarrow$$
 $g(x) = a \cdot f(b \cdot (x - c)) + d$

ken in	Verschie	eben in
x - Richtung	y - Richtung	x - Richtung
$g(x) = (2x)^{2} = 4x^{2}$ y	$g(x) = x^{2} - 2$	$g(x) = (x-2)^{2}$
$g(x) = e^{0.5x}$ $g(x) = e^{$	$g(x) = e^{x} + 2$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$	$g(x) = e^{x-2}$
$g(x) = \sin(2x)$ $g(x)$	$g(x) = \sin(x) + 2$	$g(x) = \sin(x+2)$
$g(x) = f(\mathbf{b} \cdot x)$ Streckung mit Faktor $\frac{1}{ \mathbf{b} } \text{ in } x\text{-Richtung}$	$g(x) = f(x) \pm d$ z.B+2: Versch. nach oben2: Versch. nach unten	$g(x) = f(x \pm c)$ z.B. $(x-2): V. \text{ nach rechts}$ $(x+2): V. \text{ nach links}$

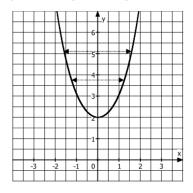
1.6 Symmetrie zur y-Achse bzw. zum Ursprung

Bei **ganzrationalen Funktionen** kann anhand der **Hochzahlen** (nur **gerade** bzw. **ungerade** Hochzahlen oder gemischt) entschieden werden, ob ein gegebenes Schaubild symmetrisch zur *y*-Achse bzw. zum Ursprung ist, oder ob keine dieser beiden Symmetriearten vorliegt.

Bei **anderen Funktionstypen** müssen hingegen die **allgemeinen Bedingungen** zur Symmetrieuntersuchung verwendet werden.

1. Allgemeine Bedingung für Achsensymmetrie zur y-Achse: f(-x) = f(x)

Bedingung in Worten


An den Stellen x und -x sind die y-Werte gleich groß.

Beispiel

Ist das Schaubild der Funktion f mit $f(x) = e^{-x} + e^{x}$ achsensymmetrisch zur y-Achse?

$$f(-x) = e^{-(-x)} + e^{-x} = e^{x} + e^{-x}$$
 Es gilt:

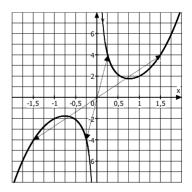
$$f(x) = e^{-x} + e^{x}$$

$$f(-x) = f(x)$$

 \Rightarrow Somit symmetrisch zur y-Achse!

2. Allgemeine Bedingung für Punktsymmetrie zum Ursprung: f(-x) = -f(x)

Bedingung in Worten


An den Stellen x und -x haben die y-Werte den gleichen "Zahlenwert", jedoch mit verschiedenen Vorzeichen. Mit dem Minuszeichen vor f(x) sind die Werte gleich.

Beispiel

Ist das Schaubild der Funktion f mit $f(x) = x^3 + \frac{1}{x}$ punktsymmetrisch zum Ursprung?

$$f(-x) = (-x)^3 + \frac{1}{-x} = -x^3 - \frac{1}{x}$$
 Es gilt:
$$-f(x) = -\left(x^3 + \frac{1}{x}\right) = -x^3 - \frac{1}{x}$$

$$f(-x) = -f(x)$$

⇒ Somit punktsymmetrisch zum Ursprung!

1.7 Umgang mit Funktionen: Rechenansätze

Aufgabenstellung	Rechenansatz		
y-Wert bei $x = 2$?	f(2) =	(x - Wert einsetzen, ausrechnen)	
Schnittpunkt mit y-Achse?	f(0) =	(0 für x einsetzen, ausrechnen)	
x-Wert bei $y = 5$?	f(x) = 5	(f(x) gleich y-Wert setzen, Gleichung lös.)	
Schnittpunkt mit <i>x</i> -Achse?	f(x) = 0	(f(x) gleich 0 setzen, Gleichung lösen)	
Liegt P(2 3) auf K_f ?	f(2) = 3	(Punktprobe: x - und y - Wert einsetzen)	
Schnittpunkt von K_f mit K_g ?	f(x) = g(x)	(gleichsetzen, Gleichung lösen)	